Affiliation:
1. Department of Chemistry and Department of Physics, University of Illinois Chicago , Chicago, Illinois 60607, USA
Abstract
Power law distributions are widely observed in chemical physics, geophysics, biology, and beyond. The independent variable x of these distributions has an obligatory lower bound and, in many cases, also an upper bound. Estimating these bounds from sample data is notoriously difficult, with a recent method involving O(N3) operations, where N denotes sample size. Here I develop an approach for estimating the lower and upper bounds that involve O(N) operations. The approach centers on calculating the mean values, x̂min and x̂max, of the smallest x and the largest x in N-point samples. A fit of x̂min or x̂max as a function of N yields the estimate for the lower or upper bound. Application to synthetic data demonstrates the accuracy and reliability of this approach.
Funder
National Institutes of Health
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献