Abstract
AbstractLiquid-liquid phase separation of protein solutions has regained heightened attention for its biological importance and pathogenic relevance. Coarse-grained models are limited when explaining residue-level effects on phase equilibrium. Here we report phase diagrams for γ-crystallins using atomistic modeling. The calculations were made possible by combining our FMAP method for computing chemical potentials and Brownian dynamics simulations for configurational sampling of dense protein solutions, yielding the binodal and critic temperature (Tc). We obtain a higher Tc for a known high-Tc γ-crystallin, γF, than for a low-Tc paralog, γB. The difference in Tc is corroborated by a gap in second virial coefficient. Decomposition of inter-protein interactions reveals one amino-acid substitution between γB and γF, from Ser to Trp at position 130, as the major contributor to the difference in Tc. This type of analysis enables us to link phase equilibrium to amino-acid sequence and to design mutations for altering phase equilibrium.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献