Affiliation:
1. Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
2. School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
3. Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg, Germany
Abstract
For a diverse range of semiconductor devices, the charge carrier lifetime is an essential characteristic. However, the carrier lifetime is difficult to control, as it is usually determined by a variety of recombination processes. For indirect bandgap materials, it is well known that effective carrier lifetimes can be improved by passivating the surface, effectively extinguishing surface-related recombination processes. However, for some applications, such as photomodulators for sub-infrared radiation, it is beneficial to tailor lifetimes to specific values, in this particular case trading off between photo-efficiency and switching speed. In this paper, we design a new type of silicon-based metamaterial with a tunable electron–hole lifetime. By periodically patterning a dielectric surface passivation layer, we create a metamaterial whereby the filling fraction of passivated relative to unpassivated areas dictates the effective charge carrier lifetime. We demonstrate tunable lifetimes between 200 μs and 8 ms in a 670 μm thick Si wafer, though in principle our approach allows one to generate any lifetime between the fully passivated and unpassivated limits of a bulk semiconductor. Finally, we investigate the application of these metamaterials as photomodulators, finding switching times that depend upon both the photoexcitation intensity, wafer thickness, and the carrier lifetime.
Funder
Engineering and Physical Sciences Research Council
Leverhulme Trust
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献