Modulators for Terahertz Communication: The Current State of the Art

Author:

Ma Z. T.1,Geng Z. X.23,Fan Z. Y.3,Liu J.4,Chen H. D.3

Affiliation:

1. College of Science, Minzu University of China, Beijing 100081, China

2. School of Information Engineering, Minzu University of China, Beijing 100081, China

3. State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

4. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Abstract

With the increase of communication frequency, terahertz (THz) communication technology has been an important research field; particularly the terahertz modulator is becoming one of the core devices in THz communication system. The modulation performance of a THz communication system depends on the characterization of THz modulator. THz modulators based on different principles and materials have been studied and developed. However, they are still on the way to practical application due to low modulation speed, narrow bandwidth, and insufficient modulation depth. Therefore, we review the research progress of THz modulator in recent years and evaluate devices critically and comprehensively. We focus on the working principles such as electric, optical, optoelectrical, thermal, magnetic, programmable metamaterials and nonlinear modulation methods for THz wave with semiconductors, metamaterials, and 2D materials (such as graphene, molybdenum disulfide, and tungsten disulfide). Furthermore, we propose a guiding rule to select appropriate materials and modulation methods for specific applications in THz communication.

Funder

National Key R. & D. Plan of China

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3