The interplay of intra- and intermolecular errors in modeling conformational polymorphs

Author:

Beran Gregory J. O.1ORCID,Wright Sarah E.2,Greenwell Chandler1ORCID,Cruz-Cabeza Aurora J.2ORCID

Affiliation:

1. Department of Chemistry, University of California, Riverside, California 92521, USA

2. Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom

Abstract

Conformational polymorphs of organic molecular crystals represent a challenging test for quantum chemistry because they require careful balancing of the intra- and intermolecular interactions. This study examines 54 molecular conformations from 20 sets of conformational polymorphs, along with the relative lattice energies and 173 dimer interactions taken from six of the polymorph sets. These systems are studied with a variety of van der Waals-inclusive density functionals theory models; dispersion-corrected spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2D); and domain local pair natural orbital coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)]. We investigate how delocalization error in conventional density functionals impacts monomer conformational energies, systematic errors in the intermolecular interactions, and the nature of error cancellation that occurs in the overall crystal. The density functionals B86bPBE-XDM, PBE-D4, PBE-MBD, PBE0-D4, and PBE0-MBD are found to exhibit sizable one-body and two-body errors vs DLPNO-CCSD(T) benchmarks, and the level of success in predicting the relative polymorph energies relies heavily on error cancellation between different types of intermolecular interactions or between intra- and intermolecular interactions. The SCS-MP2D and, to a lesser extent, ωB97M-V models exhibit smaller errors and rely less on error cancellation. Implications for crystal structure prediction of flexible compounds are discussed. Finally, the one-body and two-body DLPNO-CCSD(T) energies taken from these conformational polymorphs establish the CP1b and CP2b benchmark datasets that could be useful for testing quantum chemistry models in challenging real-world systems with complex interplay between intra- and intermolecular interactions, a number of which are significantly impacted by delocalization error.

Funder

National Science Foundation

XSEDE

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3