Crystal size, shape, and conformational changes drive both the disappearance and reappearance of ritonavir polymorphs in the mill

Author:

Sacchi Pietro12ORCID,Wright Sarah E.1ORCID,Neoptolemou Petros1ORCID,Lampronti Giulio I.3ORCID,Rajagopalan Ashwin Kumar1ORCID,Kras Weronika14,Evans Caitlin L.5ORCID,Hodgkinson Paul5ORCID,Cruz-Cabeza Aurora J.145ORCID

Affiliation:

1. Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, United Kingdom

2. The Cambridge Crystallographic Data Centre, Cambridge CB2 1EZ, United Kingdom

3. Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom

4. Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield SK10 2NA, United Kingdom

5. Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom

Abstract

Organic compounds can crystallize in different forms known as polymorphs. Discovery and control of polymorphism is crucial to the pharmaceutical industry since different polymorphs can have significantly different physical properties which impacts their utilization in drug delivery. Certain polymorphs have been reported to ‘disappear’ from the physical world, irreversibly converting to new ones. These unwanted polymorph conversions, initially prevented by slow nucleation kinetics, are eventually observed driven by significant gains in thermodynamic stabilities. The most infamous of these cases is that of the HIV drug ritonavir (RVR): Once its reluctant form was unwillingly nucleated for the first time, its desired form could no longer be produced with the same manufacturing process. Here we show that RVR’s extraordinary disappearing polymorph as well as its reluctant form can be consistently produced by ball-milling under different environmental conditions. We demonstrate that the significant difference in stability between its polymorphs can be changed and reversed in the mill—a process we show is driven by crystal size as well as crystal shape and conformational effects. We also show that those effects can be controlled through careful design of milling conditions since they dictate the kinetics of crystal breakage, dissolution, and growth processes that eventually lead to steady-state crystal sizes and shapes in the mill. This work highlights the huge potential of mechanochemistry in polymorph discovery of forms initially difficult to nucleate, recovery of disappearing polymorphs, and polymorph control of complex flexible drug compounds such as RVR.

Funder

Eli Lilly

UKRI | Engineering and Physical Sciences Research Council

The Cambridge Crystallographic Data Centre

Royal Society

Publisher

Proceedings of the National Academy of Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3