Thermal decomposition of trimethylindium and indium trisguanidinate precursors for InN growth: An ab initio and kinetic modeling study

Author:

Damas Giane B.1ORCID,Rönnby Karl1ORCID,Pedersen Henrik1ORCID,Ojamäe Lars1ORCID

Affiliation:

1. Department of Physics, Chemistry and Biology (IFM), Linköping University , 581 83 Linköping, Sweden

Abstract

Indium nitride (InN) is an interesting material for future electronic and photonic-related applications, as it combines high electron mobility and low-energy band gap for photoabsorption or emission-driven processes. In this context, atomic layer deposition techniques have been previously employed for InN growth at low temperatures (typically <350 °C), reportedly yielding crystals with high quality and purity. In general, this technique is assumed to not involve any gas phase reactions as a result from the time-resolved insertion of volatile molecular sources into the gas chamber. Nonetheless, such temperatures could still favor the precursor decomposition in the gas phase during the In half-cycle, therefore altering the molecular species that undergoes physisorption and, ultimately, driving the reaction mechanism to pursue other pathways. Thence, we herein evaluate the thermal decomposition of relevant In precursors in the gas phase, namely, trimethylindium (TMI) and tris(N,N′-diisopropyl-2-dimethylamido-guanidinato) indium (III) (ITG), by means of thermodynamic and kinetic modeling. According to the results, at T = 593 K, TMI should exhibit partial decomposition of ∼8% after 400 s to first generate methylindium and ethane (C2H6), a percentage that increases to ∼34% after 1 h of exposure inside the gas chamber. Therefore, this precursor should be present in an intact form to undergo physisorption during the In half-cycle of the deposition (<10 s). On the other hand, the ITG decomposition starts already at the temperatures used in the bubbler, in which it slowly decomposes as it is evaporated during the deposition process. At T = 300 °C, the decomposition is a fast process that reaches 90% completeness after 1 s and where equilibrium, at which almost no ITG remains, is achieved before 10 s. In this case, the decomposition pathway is likely to occur via elimination of the carbodiimide ligand. Ultimately, these results should contribute for a better understanding of the reaction mechanism involved in the InN growth from these precursors.

Funder

Stiftelsen för Strategisk Forskning

Vetenskapsrådet

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3