Sapphire crystal growth and solid–liquid interface structure: An investigation by molecular dynamic simulation and Czochralski growth

Author:

Liu Feng1ORCID,Chen Kunfeng2ORCID,Peng Chao1ORCID,Xue Dongfeng1ORCID

Affiliation:

1. Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences 1 , Shenzhen 518055, China

2. State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University 2 , Jinan 250100, China

Abstract

Sapphire has increasing demand toward optoelectrical devices like LED; its big challenge is to find reasonable growth mechanisms for high quality large size single crystals. In this paper, we proposed both theoretical and experimental studies to clarify multiscale behaviors within the Al2O3 growth system. Molecular dynamics simulation for sapphire crystal growth along c-, a-, and m-axes, and solid–liquid interface structure, and grown 2″ sapphire via the Czochralski method along the c-axis, were reported herein. Our studies show that α-Al2O3 growth behaviors along different crystal directions are different, which is different from the amorphous Al2O3 phase transition at the various α-Al2O3 planes. α-Al2O3 crystal growth in the c-axis system may be a complex process involving solid–liquid and solid–solid transformations, rather than a single solid–liquid transformation that happened in the systems growing along the a- and m-axes. Within the time scale of simulation, the crystals cannot be grown by the lattice period of the seed crystal along the c-axis and transform into γ-Al2O3 rather than α-Al2O3, while it is opposite along the a- and m-axes. This may be the microscopic reason why it is difficult to grow sapphire along the c-axis in the experiment. An abrupt change in the interfacial structure is the key reason to inhibit the transformation of liquid Al2O3 into α-Al2O3 along the c-axis.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Shandong Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3