Experimental and theoretical study of hole scattering in RF sputtered p-type Cu2O thin films

Author:

Jo Jaesung1ORCID,Deng Zihao2ORCID,Sanders Nocona2ORCID,Kioupakis Emmanouil2ORCID,Peterson Rebecca L.12ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, USA

2. Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, Michigan 48109, USA

Abstract

One of the key materials of interest for p-type oxide semiconductor thin film electronics is cuprous oxide (Cu2O), due to its relatively high hole mobility. In this work, we use experiments, analytical models, and density functional theory calculations to study the scattering mechanisms that determine Hall mobility in two Cu2O samples. First, we examine a polycrystalline Cu2O thin film deposited by RF magnetron sputtering, and second, a single-crystalline Cu2O bulk substrate. Temperature-dependent Hall measurements indicate that neutral impurity and grain boundary scattering are dominant for the polycrystalline Cu2O thin film, while phonon scattering is dominant for single-crystalline Cu2O. Our first-principles calculations show that the room-temperature intrinsic hole mobility of Cu2O is 106 cm2 V−1 s−1, indicating the great promise of the material for p-type electronic devices. This intrinsic mobility is limited by phonon scattering, with the most dominant scattering modes having phonon energies of 88.4 and 17.1 meV. These results indicate that the key pathways to increase the hole mobility in Cu2O thin films are by reducing the impurity concentration and by increasing grain size. Our work thus sets the stage for the future development of high performance Cu2O-based p-type thin film transistors.

Funder

Intel Corporation

National Energy Research Scientific Computing Center

University of Michigan

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3