Critical and controversial issues pertaining to the growth and properties of Cu2O in the context of energy conversion

Author:

Prountzou Eleni1ORCID,Ioannou Andreas2ORCID,Sapalidis Dimitrios1ORCID,Pavlidou Eleni1,Katsikini Maria1ORCID,Othonos Andreas3ORCID,Zervos Matthew2ORCID

Affiliation:

1. School of Physics, Aristotle University of Thessaloniki 1 , GR-54124 Thessaloniki, Greece

2. Nanostructured Materials and Devices Laboratory, School of Engineering, University of Cyprus 2 , P.O. Box 20537, Nicosia 1678, Cyprus

3. Laboratory of Ultrafast Science, School of Physical Sciences, University of Cyprus 3 , P.O. Box 20537, Nicosia 1678, Cyprus

Abstract

Cu2O has been deposited on m-, r-, and a-Al2O3 by reactive sputtering of Cu using Ar with different contents of O2 followed by annealing under carefully optimized conditions at 500 °C under Ar:H2 in order to prevent the oxidation and reduction of the Cu2O layers, which have a cubic crystal structure and are bulk-relaxed. We find that the content of O2 influences the structural and optical properties of the Cu2O layers that exhibited a detailed spectral structure and distinct peaks at 2.75, 2.54, and 2.17 eV corresponding to the indigo, blue, and yellow direct gap transitions of Cu2O as observed by ultrafast pump–probe spectroscopy at room temperature. However, we also observed a transition at 1.8 eV that is related to the occurrence of states ∼0.4 eV below the conduction band minimum of Cu2O. We discuss the controversial origin of these states, which are usually attributed to donor-like oxygen vacancy states, and suggest that the origin of these states may be related to traps at the interfaces of CuO/Cu2O nanostructures, which is important in the context of energy conversion pertaining to solar cells and photocatalysis.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3