Dissociation line and driving force for nucleation of the nitrogen hydrate from computer simulation

Author:

Algaba Jesús1ORCID,Torrejón Miguel J.1ORCID,Blas Felipe J.1ORCID

Affiliation:

1. Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva , 21006 Huelva, Spain

Abstract

In this work, we determine the dissociation line of the nitrogen (N2) hydrate by computer simulation using the TIP4P/Ice model for water and the TraPPE force field for N2. We use the solubility method proposed recently by some of us to evaluate the dissociation temperature of the hydrate at different pressures, from 500 to 1500 bar. Particularly, we calculate the solubility of N2 in the aqueous solution when it is in contact with a N2-rich liquid phase and when in contact with the hydrate phase via planar interfaces as functions of temperature. Since the solubility of N2 decreases with temperature in the first case and increases with temperature in the second case, both curves intersect at a certain temperature that determines the dissociation temperature at a given pressure. We find a good agreement between the predictions obtained in this work and the experimental data taken from the literature in the range of pressures considered in this work. From our knowledge of the solubility curves of N2 in the aqueous solution, we also determine the driving force for nucleation of the hydrate, as a function of temperature, at different pressures. In particular, we use two different thermodynamic routes to evaluate the change in chemical potential for hydrate formation. Although the driving force for nucleation slightly decreases (in absolute value) when the pressure is increased, our results indicate that the effect of pressure can be considered negligible in the range of pressures studied in this work. To the best of our knowledge, this is the first time the driving force for nucleation of a hydrate that exhibits crystallographic structure sII, along its dissociation line, is studied from computer simulation.

Funder

Ministerio de Ciencia e Innovaciión

Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía

Universidad de Huelva

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3