Dissociation line and driving force for nucleation of the nitrogen hydrate from computer simulation. II. Effect of multiple occupancy

Author:

Torrejón Miguel J.1ORCID,Algaba Jesús1ORCID,Blas Felipe J.1ORCID

Affiliation:

1. Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva , 21006 Huelva, Spain

Abstract

In this work, we determine the dissociation line of the nitrogen (N2) hydrate by computer simulation using the TIP4P/Ice model for water and the TraPPE force field for N2. This work is the natural extension of Paper I, in which the dissociation temperature of the N2 hydrate has been obtained at 500, 1000, and 1500 bar [Algaba et al., J. Chem. Phys. 159, 224707 (2023)] using the solubility method and assuming single occupancy. We extend our previous study and determine the dissociation temperature of the N2 hydrate at different pressures, from 500 to 4500 bar, taking into account the single and double occupancy of the N2 molecules in the hydrate structure. We calculate the solubility of N2 in the aqueous solution as a function of temperature when it is in contact with a N2-rich liquid phase and when in contact with the hydrate phase with single and double occupancy via planar interfaces. Both curves intersect at a certain temperature that determines the dissociation temperature at a given pressure. We observe a negligible effect of occupancy on the dissociation temperature. Our findings are in very good agreement with the experimental data taken from the literature. We have also obtained the driving force for the nucleation of the hydrate as a function of temperature and occupancy at several pressures. As in the case of the dissociation line, the effect of occupancy on the driving force for nucleation is negligible. To the best of our knowledge, this is the first time that the effect of the occupancy on the driving force for nucleation of a hydrate that exhibits sII crystallographic structure is studied from computer simulation.

Funder

Ministerio de Ciencia e Innovación

Universidad de Huelva

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3