Aerodynamic performance of a bio-inspired flapping wing with local sweep morphing

Author:

Wang Chunyu12,Liu Yi12,Xu Duo12ORCID,Wang Shizhao12ORCID

Affiliation:

1. The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Birds and bats frequently reconfigure their wing planform through a combination of flapping and local sweep morphing, suggesting a possible approach for improving the performance of micro aerial vehicles. We explore the effects of combined flapping and local sweep morphing on aerodynamic performance by employing a bio-inspired two-jointed flapping wing with local sweep morphing. The bio-inspired wing consists of inner and outer sections, which flap around the root joint (shoulder) and the midspan joint (wrist), respectively. The aerodynamic forces and the unsteady vortex structures are evaluated by numerically solving the incompressible Navier–Stokes equations. The results show that combined flapping and local sweep morphing can significantly enhance the aerodynamic performance. In particular, the average lift coefficient is 1.50 times greater than that of simple gliding with single local sweep morphing. Combined flapping and local sweep morphing also have a relatively high pitch moment and shift the aerodynamic center position backward, producing advantages in terms of maneuverability/agility and stability. We find that the vortex structures associated with the combined motion feature midspan vortices, which arise from the leading-edge vortices of the inner wing and contribute to the enhanced aerodynamic performance. We show that the kinematics of combined flapping and local sweep morphing can be further optimized if the midspan vortices are captured by the outer wing.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3