Vortices and Forces in Biological Flight: Insects, Birds, and Bats

Author:

Liu Hao1,Wang Shizhao2,Liu Tianshu3

Affiliation:

1. Graduate School of Engineering, Chiba University, Chiba, Japan;

2. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, People's Republic of China;

3. Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, Michigan, USA;

Abstract

Insects, birds, and bats that power and control flight by flapping their wings perform excellent flight stability and maneuverability by rapidly and continuously varying their wing motions. This article provides an overview of the state of the art of vortex-dominated, unsteady flapping aerodynamics from the viewpoint of diversity and uniformity associated with dominant vortices, particularly of the relevant physical aspects of the flight of insects and vertebrates in the low- and intermediate-Reynolds-number ( Re) regime of 100 to 106. After briefly describing wing morphology and kinematics, we discuss the main vortices generated by flapping wings and the aerodynamic forces associated with these structures, focusing on leading-edge vortices (LEVs), wake vortices, and vortices generated by wing motions over a broad Re range. The LEVs are intensified by dynamic wing morphing in bird and bat flight, producing a significantly elevated vortex lift. The complex wake vortices are the footprints of lift generation; thus, the time-averaged vortex lift can be estimated from wake velocity data. Computational fluid dynamics modeling, quasi-steady models, and vortex lift models are useful tools to elucidate the intrinsic relationships between the lift and the dominant vortices in the near- and far-fields in flapping flight.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3