Assignments of vibrational lines to OD-impurity complexes for adventitious impurities in β-Ga2O3

Author:

Venzie Andrew1ORCID,Stavola Michael1ORCID,Fowler W. Beall1ORCID,Glaser Evan R.2ORCID,Tadjer Marko J.2ORCID,Forbus Jason I.3,Zvanut Mary Ellen3ORCID,Pearton Stephen J.4ORCID

Affiliation:

1. Department of Physics, Lehigh University 1 , Bethlehem, Pennsylvania 18015, USA

2. U.S. Naval Research Laboratory, Electronics Science and Technology Division Code 6880 2 , Washington, District of Columbia 20375, USA

3. Department of Physics, University of Alabama at Birmingham 3 , Birmingham, Alabama 35294, USA

4. Department of Materials Science and Engineering, University of Florida 4 , Gainesville, Florida 32611, USA

Abstract

Hydrogen in β-Ga2O3 passivates shallow impurities and deep-level defects and can have a strong effect on conductivity. More than a dozen O–D vibrational lines have been reported for β-Ga2O3 treated with the heavy isotope of hydrogen, deuterium. To explain the large number of O–D centers that have been observed, the involvement of additional nearby defects and impurities has been proposed. A few O–H centers have been associated with specific impurities that were introduced intentionally during crystal growth. However, definitive assignments of O–H and O–D vibrational lines associated with important adventitious impurities, such as Si and Fe, have been difficult. A set of well-characterized Si-doped β-Ga2O3 epitaxial layers with different layer thicknesses has been deuterated and investigated by vibrational spectroscopy to provide new evidence for the assignment of a line at 2577 cm−1 to an OD–Si complex. The vibrational properties of several of the reported OD-impurity complexes are consistent with the existence of a family of defects with a VGa1ic−D center at their core that is perturbed by a nearby impurity.

Funder

Division of Materials Research

Defense Threat Reduction Agency

Office of Advanced Cyberinfrastructure

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3