Compact acoustic metamaterial based on the 3D Mie resonance of a maze ball with an octahedral structure

Author:

Zhang Ting1ORCID,Bok Eun2ORCID,Tomoda Motonobu2ORCID,Matsuda Osamu2ORCID,Guo Jianzhong3ORCID,Liu Xiaojun4ORCID,Wright Oliver B2ORCID

Affiliation:

1. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

3. School of Physics and Information Technology, Shaanxi Normal University, Xian 710119, China

4. Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

Abstract

Acoustic metamaterials (AMs) offer ever-expanding possibilities for manipulating sound waves. Potential applications include diagnostic medical imaging, super-absorption, acoustic sensing, and acoustic stealth. In spite of recent progress, the investigation of AMs with a three-dimensional (3D) response is lagging behind, in particular for those that exhibit an isotropic response. Here, we demonstrate a highly compact subwavelength maze-like multi-shell plastic sphere, which generates Mie resonances with isotropic monopolar and anisotropic dipole, quadrupole, and octupole modes at low frequencies for airborne sound, based on an octahedral structure. Eigenmode analysis shows that the proposed maze ball exhibits a negative bulk modulus at the monopole Mie resonance frequency in the absence of viscous losses, which is a signature of strong transmission blocking. With a diameter of 0.17 λ and a volume filling factor of 13.5%, a constructed single 3D maze ball reduces the experimentally-measured transmitted acoustic energy by 67%, limited mainly by viscous losses. With optimized fabrication, the proposed 3D Mie resonator should provide a versatile approach for the manipulation of sound waves on a subwavelength scale, and lead to the realization of practical 3D metamaterial devices.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3