A football-like acoustic metamaterial with near-zero refractive index and broadband ventilated sound insulation

Author:

Wang Yipu,Chen WenjiongORCID,Liu ShutianORCID

Abstract

Abstract Acoustic metamaterial with negative or near-zero refractive index exhibits extraordinary acoustic transmission characteristics, including acoustic total reflection, acoustic stealth and acoustic tunneling. Based on the coiled-up space structure, a football like near-zero refractive index acoustic metamaterial (FNZIM) was proposed. The result reveals the formation of two transmission peaks at 1270 Hz and 2300 Hz from the equivalent parameters by using the transfer matrix method. The first peak exhibits excellent air impedance matching, while the second peak arising from the metamaterial’s near-zero refractive index. We then constructed an acoustic prism using 15 cells of FNZIM and calculated the dispersion curve, revealing that the near-zero refractive index supernormal transmission of metamaterials is attributable to multimode degeneracy. Furthermore, we find that the positions of the transmission peaks and transmission loss can be adjusted by appropriately altering the structural parameters. Finally, we tested two groups of samples by using impedance tube four-channel to verify the accuracy of the simulation and the validity of insulation performance of FNZIM. The broadband ventilation sound insulation coupled structure is constructed, and the average sound insulation performance of this structure is more than 25 dB in the range of 1140–2210 Hz.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3