On acoustically modulated jet shear layers and the Nyquist–Shannon sampling theorem

Author:

Nicholls C. J.1ORCID,Chakravarthy K.1ORCID,Tang B. M. T.1ORCID,Williams B. A. O.1ORCID,Bacic M.1ORCID

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX2 0ES, United Kingdom

Abstract

The goal of this paper is to present the behavior of a jet shear layer in response to acoustic excitation from a signal processing perspective. The main idea is that the vortices that roll-up in the jet shear layer are similar to the discrete samples of a digital control system, and, hence, that the Nyquist–Shannon sampling theorem should apply. We further hypothesize that the strength of a vortex is determined by the mean amplitude of the excitation waveform during its creation. We also argue that, at least in some cases, demodulation occurs as a result of the vorticity signal generated by the convection of discrete vortices past a point in the shear layer. This vorticity signal is related to the amplitude modulation (AM) excitation waveform by a half-wave rectification operation, a common implementation of an AM demodulator. To investigate these ideas, a free, round jet that is excited upstream of the nozzle is studied using particle image velocimetry. Experiments are conducted that confirm that the sampling theorem applies, and an aliased response is observed when the Nyquist limit is exceeded. Previous authors have attributed demodulation to a vortex merging mechanism, but we demonstrate that merging is not always required for demodulation and suggest that it is one of two mechanisms at play.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An analytical model of the dynamics of reattaching jets;Physics of Fluids;2023-11-01

2. A model for multiphase flow velocity calculation in pipelines based on ultrasonic sensors;Physics of Fluids;2023-09-01

3. UltraDigit: An ultrasound signal‐based in‐air digit input system via transfer learning;IET Radar, Sonar & Navigation;2023-08-23

4. Advanced Control of Pressure Inside a Surgical Chamber Using AI Methods;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

5. Reattaching jet response to transverse acoustic excitation;AIAA AVIATION 2023 Forum;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3