A model for multiphase flow velocity calculation in pipelines based on ultrasonic sensors

Author:

Liang HaiboORCID,Song ChuanhaoORCID,Wang Ren,Yang HaiORCID

Abstract

In the petroleum and natural gas industry, a wide variety of multiphase fluids are prevalent, and precise measurement of their flow velocity in pipelines holds significant importance for different stages of well drilling and construction. However, due to the presence of large solid particles and the corrosive nature of the liquid phase in multiphase fluids within the petroleum industry, invasive measurement methods struggle to maintain long-term acceptable detection accuracy. Therefore, the non-contact fluid flow velocity measurement method based on ultrasonic sensors exhibits substantial research value. Nonetheless, when employing this approach for pipeline multiphase fluid flow velocity measurement, the abundance of background interference noise at the site poses challenges in Doppler echo signal reconstruction and results in lower precision for frequency shift extraction, leading to considerable errors in flow velocity calculation results. To address this issue, the present study utilizes a transmit-receive separated continuous wave ultrasonic sensor. First, a mathematical model is developed for the superimposed signal of ultrasonic Doppler echoes within the pipeline. Next, a novel signal reconstruction method is proposed by employing Chebyshev polynomials for interpolation computation of the sampled discrete signals. Subsequently, a Doppler shift model is introduced, leading to the formulation of a new model for multiphase flow velocity calculation in pipelines based on ultrasonic sensors. Finally, a comparison experiment for full-pipe multiphase flow velocity detection is conducted to validate the computational performance of the new model. The experimental results show that, compared with the FFT model and the conventional cross correlation model, the comprehensive meter factor of the ultrasonic flow measurement system with the new model is reduced by 0.024 445, the accuracy is reduced by 2.98%, the nonlinear error is reduced by 2.4405%, the average relative error is reduced by 0.646%, the standard deviation is reduced by 0.045 175, and the root mean squared error is reduced by 0.029 615.

Funder

National Natural Science Foundation of China

Science and Technology Cooperation Project of the CNPC-SWPU Innovation ALLiance

Sichuan Science and Technology Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3