Improving the cooldown times for next-generation cryocooled gravitational-wave interferometers

Author:

Bonilla Edgard1ORCID,Salone Jaimi1,Lantz Brian1ORCID,Galper Aaron2,Stults Faith3

Affiliation:

1. Stanford University 1 , Stanford, California 94305, USA

2. Harvey Mudd College 2 , Claremont, California 91711, USA

3. Valley Christian Schools 3 , San Jose, California 95111, USA

Abstract

We propose and test an exchange gas technique for improving the cooldown times of cryocooled gravitational-wave interferometers. The technique works by utilizing low-pressure dry nitrogen gas to create a path for heat conduction to test masses while protecting the rest of the in-vacuum equipment from unwanted heat leakage. We show that the technique is capable of shortening the total wait time to reach the operating temperature by a factor of 3.5. Additionally, our tests show that the improvement in the heat transfer rate can be predicted to be within 10% error by using the Sherman-Lees interpolation equation. The technique is compatible with vibration isolation requirements of the cryogenic shielding of 124 K silicon interferometers and has the potential to improve the iteration time for research and development. The scalability of the prototype, the ability to predict the heat conduction, and the simplicity of the engineering make the strategy a good candidate to be included in the cryogenic design of future cryocooled gravitational-wave interferometers. The findings mark a first step in the investigation for a strategy to mitigate ice formation on the interferometer optics during initial cooldown.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference44 articles.

1. Observation of gravitational waves from a binary black hole merger;Phys. Rev. Lett.,2016

2. Cosmic Explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO

3. The Einstein Telescope: A third-generation gravitational wave observatory;Class. Quantum Gravity,2010

4. Neutron star extreme matter observatory: A kilohertz-band gravitational-wave detector in the global network;Publ. Astron. Soc. Australia,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3