Affiliation:
1. Department of Physics, University of Nevada Reno, Reno, Nevada 89557, USA
Abstract
Hard x-rays produced by intense laser-produced fast electrons interacting with solids are a vital source for producing radiographs of high-density objects and implosion cores for inertial confinement fusion. Accurate calculation of hard x-ray sources requires a three-dimensional (3D) simulation geometry that fully models the electron transport dynamics, including electron recirculation and the generation of absolute photon yields. To date, 3D simulations of laser-produced bremsstrahlung photons over tens of picoseconds and code benchmarking have not been performed definitively. In this study, we characterize sub-picosecond laser-produced fast electrons by modeling angularly resolved bremsstrahlung measurements for refluxing and non-refluxing targets using the 3D hybrid particle-in-cell (PIC), Large Scale Plasma code. Bremsstrahlung radiation and escaped electron data were obtained by focusing a 50-TW Leopard laser (15 J, 0.35 ps, 2 × 1019 W/cm2) on a 100- μm-thick Cu foil and a Cu with a large plastic backing (Cu–CH target). Data for both the Cu and Cu–CH targets were reproduced for simulations with a given set of electron parameters. Comparison of the simulations revealed that the hard x-ray emission from the Cu target was significantly longer in duration than that from the Cu–CH target. The benchmarked hybrid PIC code could prove to be a powerful tool in the design and optimization of time- and angular-dependent bremsstrahlung sources for flash x-ray and gamma-ray radiography.
Funder
National Science Foundation
U.S. Department of Energy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献