Chlorine-based non-covalent graphene analog on Cu(111)

Author:

Peng Xinchen1,Xiao Lei2,Liu Xinbang1,Qian Yinyue1,Zhang Yonghao1,Jiang Wei2,Ji Qingmin1,Fuchs Harald134ORCID,Kong Huihui1ORCID

Affiliation:

1. Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

2. National Special Superfine Powder Engineering Research Center of China, School of Chemical and Chemistry Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

3. Physikalisches Institute, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany

4. Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, Münster 48149, Germany

Abstract

Advanced fabrication of specific graphene analogs on surfaces will facilitate the exploitation of unexplored physical properties that may enrich their potential applications in the future, and the quest for graphene analogs has expanded from covalent graphene analogs to non-covalent ones. Previously, artificial non-covalent molecular graphene has been assembled by atomic manipulation, which, however, is a technical challenge and extremely limits the creation of non-covalent graphene analogs over a large area. Herein, we achieve the fabrication of a chlorine(Cl)-based non-covalent graphene analog stabilized by copper(Cu) adatoms on Cu(111) through an easy-to-facilitate self-assembly approach, as demonstrated by the combination of scanning tunneling microscopy imaging and density functional theory calculations. Moreover, the Cu adatoms are found to uniformly distribute within such a non-covalent graphene analog, which is inaccessible for covalent ones and shows potential for stabilizing the non-covalent graphene analog as well as modulating its overall electronic properties. Such findings exemplify the construction of non-covalent graphene analogs with a large area by a more effective self-assembled approach in contrast to the previous atomic manipulation method.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3