Orthogonal grid physics-informed neural networks: A neural network-based simulation tool for advection–diffusion–reaction problems

Author:

Hou Qingzhi1ORCID,Sun Zewei2ORCID,He Li1ORCID,Karemat Alireza3ORCID

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China

2. College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

3. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hongkong, China

Abstract

Stable and accurate reconstruction of pollutant transport is a crucial and challenging problem, including the inverse problem of identifying pollution sources and physical coefficients and the forward problem of inferring pollutant transport. Governed by advection, diffusion, and reaction processes, this transport phenomenon can be represented by the advection–diffusion–reaction (ADR) equation. In this paper, the physics-informed neural networks (PINNs) are applied to solve the forward and inverse ADR problems. To further enhance the stability and accuracy of the original PINN, two improvements are developed. The first adjusts the orthogonal grid (OG) point selection method and the other suggests adding an additional regulation function, namely, first derivative constraint (FDC). The new method is referred to as OG-PINN with FDC. To verify the effectiveness of the proposed method, five forward and inverse ADR problems are solved, and the results are compared with the analytical and reference solutions. For forward problems, the improved method can solve various ADR problems accurately and stably. For inverse problems, the ability of the OG-PINN for model parameter learning and initial distribution prediction is demonstrated and analyzed. The former gives the missed physical information in the ADR equation from the data, and the latter is used to trace the source of pollutants. The proposed method is quantitatively reliable for investigating various advection–diffusion–reaction processes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic Research Program of Qinghai Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3