Physics-regulated dynamic mode decomposition for natural gas pipeline flow

Author:

Koo BonchanORCID,Chang SeungjoonORCID,Kim Hyoung-HoORCID,Park Sung GoonORCID

Abstract

This study introduces a novel integration of dynamic mode decomposition (DMD) with physical regulations for natural gas pipeline flow. It aims to address the limitations of purely data-driven models and the importance of incorporating the physics of complex dynamic systems. By considering the mass conservation law, the proposed model ensures that the predictions generated via DMD with control adhere to the physical laws, resulting in a multi-objective optimization problem. To verify its performance, the proposed model was evaluated using real-world data of natural gas pipelines. The results demonstrate its superior accuracy and ability to avoid physically implausible predictions, particularly under data-limited conditions. Despite an increase in the overall computational cost by approximately 15%, the model achieved up to 50% error reduction with scarce training data, highlighting its robustness and effectiveness. This study represents a significant advancement in data-driven modeling techniques by fulfilling the critical need for accurate and reliable predictions that respect physical constraints, thus enhancing the interpretability and validity of the results.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3