Composition variations in Cu(In,Ga)(S,Se)2 solar cells: Not a gradient, but an interlaced network of two phases

Author:

Prot Aubin JC. M.1ORCID,Melchiorre Michele1ORCID,Dingwell Felix1,Zelenina Anastasia2,Elanzeery Hossam2ORCID,Lomuscio Alberto2,Dalibor Thomas2ORCID,Guc Maxim3ORCID,Fonoll-Rubio Robert3ORCID,Izquierdo-Roca Victor3ORCID,Kusch Gunnar4ORCID,Oliver Rachel A.4ORCID,Siebentritt Susanne1ORCID

Affiliation:

1. Laboratory for Photovoltaics, Physics and Materials Science Research Unit, University of Luxembourg 1 , 41 rue du Brill, Belvaux L-4422, Luxembourg

2. AVANCIS GmbH 2 , Otto-Hahn-Ring 6, 81739 München, Germany

3. Catalonia Institute for Energy Research (IREC) 3 , Jardins de les Dones de Negre 1, 2a pl., 08930 Sant Adrià de Besòs, Barcelona, Spain

4. Department of Materials Science and Metallurgy, University of Cambridge 4 , 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

Abstract

Record efficiency in chalcopyrite-based solar cells Cu(In,Ga)(S,Se)2 is achieved using a gallium gradient to increase the bandgap of the absorber toward the back side. Although this structure has successfully reduced recombination at the back contact, we demonstrate that in industrial absorbers grown in the pilot line of Avancis, the back part is a source of non-radiative recombination. Depth-resolved photoluminescence (PL) measurements reveal two main radiative recombination paths at 1.04 eV and 1.5–1.6 eV, attributed to two phases of low and high bandgap material, respectively. Instead of a continuous change in the bandgap throughout the thickness of the absorber, we propose a model where discrete bandgap phases interlace, creating an apparent gradient. Cathodoluminescence and Raman scattering spectroscopy confirm this result. Additionally, deep defects associated with the high gap phase reduce the absorber's performance. Etching away the back part of the absorber leads to an increase of one order of magnitude in the PL intensity, i.e., 60 meV in quasi-Fermi level splitting. Non-radiative voltage losses correlate linearly with the relative contribution of the high energy PL peak, suggesting that reducing the high gap phase could increase the open circuit voltage by up to 180 mV.

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Reference43 articles.

1. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%;IEEE J. Photovoltaics,2019

2. High efficiency graded bandgap thin-film polycrystalline Cu(In,Ga)Se2-based solar cells;Sol. Energy Mater. Sol. Cells,1996

3. High voltage Cu(In,Ga)Se, devices with Ga-profiling fabricated using co-evaporation,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3