Research on the dynamic response of pressurized cylindrical shell structures subjected to a near-field underwater explosion

Author:

Mao Wen-shengORCID,Zhong Ming-shouORCID,Xie Xing-bo,Ma Hua-yuan,Yang Gui-li,Fan Lei

Abstract

To study the dynamic response of a pressurized thin-walled circular tube structure subjected to a near-field underwater explosion, deformation and damage tests of a pressurized cylindrical tube shell with different internal pressures and wall thicknesses with the effects of an underwater explosion from 2 g of explosives at different stand-off distances were carried out in a water tank. LS-DYNA finite element software was used to carry out relevant numerical simulations to explore the anti-explosion mechanism of a pressurized cylindrical shell structure affected by factors including the initial internal pressure, the thickness of the cylindrical shell, and the stand-off distance. The simulation inputs are high-speed photography images and the damage results of the cylindrical shell. The simulation results highlight the bubble pulsation, action process deformation, and energy change of the cylindrical shell. The results indicate that an increase in the initial pressure of the cylindrical shell can effectively improve its anti-explosion ability, while the different stand-off distances of r = 12 cm and r = 9 cm correspond to the same initial internal pressure. Increasing the initial internal pressure also causes the deflection difference of the cylindrical shell to decrease. The modeling results also indicate that an increase in the wall thickness may weaken the anti-explosion ability of the cylindrical shell, which has an initial internal pressure of Pr = 0.7 MPa. After an underwater explosion, the maximum displacement difference of a cylindrical shell with thicknesses of h = 1 mm and h = 1.5 mm is less than the maximum rebound distance difference. With this decrease in the distance, the proportion of the high-pressure cylindrical shell subjected to a shock wave increases while the proportion of bubble pulsation decreases. Specifically, the maximum proportions of bubble pulsation are 30% and 92% at the stand-off distances of 3 and 12 cm, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference26 articles.

1. Shock loading and failure of fluid-filled tubular structures,2010

2. Multiple shock loading on fluid-filled shell structures;Can. Acoust.,2010

3. Failure analysis of oil and gas transmission pipelines,2016

4. Structural performance of oil and gas pipe with dent defect;J. Pipeline Syst. Eng. Pract.,2018

5. Deformation and tearing of circular plates with varying support conditions under uniform impulsive loads;Int. J. Impact Eng.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3