Dynamic response of a hollow cylindrical shell subjected to a near-field underwater explosion

Author:

Mao Wen-sheng1ORCID,Zhong Ming-shou1ORCID,Xie Xing-bo1,Ma Hua-yuan1,Yang Gui-li1,Fan Lei1

Affiliation:

1. College of Field Engineering, Army Engineering University of PLA , Nanjing 210007, China

Abstract

To investigate the dynamic response of a hollow cylindrical shell structure subjected to a near-field underwater explosion, underwater explosion experiments were conducted in a 2 × 2 × 2 m water tank, and high-speed cameras were used to record the interactions between the bubbles generated by the underwater explosion and the hollow cylindrical shell. The high-speed photography results showed that the cylindrical shell experienced a minor degree of deformation during the shock-wave stage. However, during the bubble-pulsation stage, the cylindrical shell experienced significant deformation that surpassed the deformation observed during the shock-wave stage. On this basis, combined with the damage results for the cylindrical shell, a numerical model for the hollow cylindrical shell subjected to an underwater explosion was established using LS-DYNA software. The dynamic process and damage mechanism of a hollow cylindrical shell that was subjected to a near-field underwater explosion were revealed by analyzing the pressures and strains of the shell elements, the velocities and displacements of the nodes, and the variations in the energy.

Funder

the national natural science foundation of China

Publisher

AIP Publishing

Reference29 articles.

1. The Nord Stream pipeline gas leaks released approximately 220,000 tonnes of methane into the atmosphere;Environ. Sci. Ecotechnol.,2022

2. Nord Stream 2: A prelude to war;Energy Strategy Rev.,2022

3. Global energy supply risk: Evidence from the reactions of European natural gas futures to Nord Stream announcements;Energ. Econ.,2023

4. Underwater explosions;Phys. Today,1948

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3