Effects of doping concentration on bond length and bond energy studied by Raman shift

Author:

Yang Xuexian12ORCID,Dong ZhiLi2ORCID,Sun Chang Q.3ORCID

Affiliation:

1. College of Physics and Mechanical & Electrical Engineering, Jishou University 1 , Jishou, Hunan 416000, China

2. School of Materials Science & Engineering, Nanyang Technological University 2 , Singapore 639798

3. Research Institute of Interdisciplinary Science (RISE) and School of Materials Science & Engineering, Dongguan University of Technology 3 , Dongguan 523808, Guangdong, China

Abstract

Based on the correlation between Raman shift and bond parameters, and further combined with experimental values of the Raman shift composition effect, the relationship between the composition and bond parameters of the 2D-M1−xM′xX2 and 2D-MX′2xX2(1−x) alloy materials was established. Numerical reproduction of the measurements clarified that the host atom phonons involved interaction with all of its z neighbors, whereas the doping atom phonon only involved interaction with a dimer. The doping of large atoms resulted in an elongation of the bond length, an increase in the equivalent coordination number, and enhancement of the binding energy. The doping of small atoms led to a contraction of the bond length, a decrease in the equivalent coordination number, and a weakening of binding energy. By quantifying the relationship between composition and bond parameters from Raman shifts, a deep understanding of two-dimensional alloy properties can be achieved.

Funder

Data Center of Management Science, National Natural Science Foundation of China - Peking University

Ministry of Education - Singapore

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3