Affiliation:
1. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
2. School of Materials Science and Engineering, Tsinghua University, Beijing 10084, China
3. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract
MAPbI3, MAPbBr3, and CsPbBr3 are excellent halide perovskite semiconductors with super long carrier diffusion length, long minority carrier lifetime, and large light absorption coefficient. Compared with the small intrinsic electrostriction, photocarriers induce a large photostriction in the surface layer. Furthermore, an electric field can efficiently separate the light excited electron–hole pairs, enhance photocarriers diffusion, and finally increase the crystal expansion, i.e., photo-electro-striction. For each crystal under 30 V/mm and in light with 450 nm wavelength and 840 mW/cm2, the photo-electro-striction is over four times of the pure electrostriction and is larger than the sum of photostriction and electrostriction. Most importantly, MAPbI3 single crystal shows a large photostriction of ∼0.35% and the photo-electro-striction of ∼0.64%. This work proves a very large photo-electro-striction as a result of the strong coupling among photocarriers, electric fields, and crystal lattices, which is important to develop semiconductor devices.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献