Geometrically driven aggregation of unsymmetrical dielectric particles

Author:

Olaya-Muñoz Daniel A.123ORCID,Hernández-Ortiz Juan P.34ORCID,Olvera de la Cruz Monica156ORCID

Affiliation:

1. Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA

2. Grupo GIBEC, Escuela de Ciencias de La Vida, Universidad EIA, Envigado 055428, Colombia

3. Global Health Institute One-Health Colombia, Universidad Nacional de Colombia, Medellín 050034, Colombia

4. Departamento de Materiales y Nanotecnología, Facultad de Minas, Universidad Nacional de Colombia, Medellín 050034, Colombia

5. Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA

6. Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA

Abstract

Understanding electrostatic interactions among dielectric bodies in the atmosphere and aerosols is central to controlling their aggregation. Polarization effects, which are frequently ignored, are crucial to determine interactions when geometrical anisotropies are present due to surface-induced charge segregation. Here, we adopt a direct integral formulation that accounts for the problem of charged dielectric bodies immersed in a continuum media to explore particle aggregation via geometrical tuning. We show that by breaking the structural symmetry and modifying the close-contact surface between particles of equal charge, it is possible to obtain attractive regimes at short and long distances. We evaluate the electrostatic forces and energy of a set of dimers and trimers composed of spheres, oblates, and prolates in a vacuum, where no counter-ions are present, to construct a phase diagram with the conditions required to form stable aggregates as a function of the geometrical anisotropy. We found that it is possible to direct the aggregation (or dispersion) of two and three positive dielectric particles by adjusting their geometry and controlling the contact surface among them. Our results give insight into a way to control the aggregation of dielectric systems and offer a prospect for directing the assembly of complex particle structures.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3