Affiliation:
1. CNRS, Solvay, LOF, UMR 5258, Univ. Bordeaux, F-33600 Pessac, France
Abstract
We have developed a microfluidic tool to measure the diffusion coefficient D of solutes in an aqueous solution by following the temporal relaxation of an initially steep concentration gradient in a microchannel. Our chip exploits multilayer soft lithography and the opening of a pneumatic microvalve to trigger the interdiffusion of pure water and the solution initially separated in the channel by the valve, the so-called free interface diffusion technique. Another microvalve at a distance from the diffusion zone closes the channel and thus suppresses convection. Using this chip, we have measured diffusion coefficients of solutes in water with a broad size range, from small molecules to polymers and colloids, with values in the range [Formula: see text] m2/s. The same experiments but with added colloidal tracers also revealed diffusio-phoresis and diffusio-osmosis phenomena due to the presence of the solute concentration gradient. We nevertheless show that these interfacial-driven transport phenomena do not affect the measurements of the solute diffusion coefficients in the explored concentration range.
Funder
Agence Nationale de la Recherche
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献