Effect of fuel temperature on mixing characteristics of a kerosene jet injected into a cavity-based supersonic combustor

Author:

Abstract

To explain the phenomenon observed in previous experiments of kerosene-ignition failure in scramjet combustors as the kerosene temperature increases, we numerically investigate the mixing characteristics of a kerosene jet injected into a cavity-based supersonic combustor at different injection temperatures by using a compressible two-phase flow large-eddy simulation based on the Eulerian–Lagrangian approach. The results indicate that, upon injecting kerosene at high temperatures, the flow field preceding the leading edge of the cavity is similar to a typical gas jet in supersonic crossflow. The wall counter-rotating vortex pair (CVP) develops more fully and eventually becomes the main vortex pair. This evolution of the wall CVP modifies the cavity shear layer and alters the local flow-field characteristics near the cavity. Upon injecting kerosene at high temperatures, its evaporation rate increases sharply and the cavity recirculation zone enlarges, which causes more kerosene vapor to be entrained into the cavity. Because the kerosene-vapor temperature is lower than that of the low-speed fluid in the cavity, a significant amount of kerosene vapor entering the cavity not only makes the mass fraction of kerosene in the cavity exceed the fuel stoichiometric mass fraction but also reduces the temperature in the cavity, which negatively impacts the ignition process. The ignition delay time is much longer when the injection temperature is high, which is consistent with the inability of the initial flame kernel to form in the experiment.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3