Study on the spray characteristics of transverse jets with elliptical nozzles in supersonic crossflows using the volume of fluid–discrete phase model

Author:

Yu ShenghaoORCID,Yin Bifeng,Jia Hekun,Zhang Kang

Abstract

The atomization characteristics of liquid jets injected transversely into a supersonic crossflow significantly affect the performance of scramjet engines. Existing research on this topic has mainly focused on circular nozzles, while the influence of nozzle geometry, particularly elliptical nozzles, has received relatively limited attention. Therefore, this study employs a numerical simulation method coupling the volume of fluid and discrete particle model to investigate the breakup and atomization characteristics of transverse liquid jets from elliptical nozzles with different aspect ratios under supersonic crossflow conditions, as well as the total pressure loss. The simulation model is validated against experimental data obtained from a pulse wind tunnel, including measurements of the liquid jet penetration depth and the Sauter mean diameter (SMD). The results indicate that for elliptical nozzles with an aspect ratio (AR) greater than 1, columnar breakup occurs earlier, and the columnar breakup length is shorter compared to circular nozzles. As the AR increases, the jet penetration depth decreases, while the spray expansion angle increases. Furthermore, the SMD of the atomized spray field from the circular nozzle is larger than that from the elliptical nozzles, and the SMD of the spray field is smallest for an elliptical nozzle with AR of 4. Finally, the elliptical nozzles exhibit a higher total pressure recovery coefficient, indicating reduced total pressure loss in the combustion chamber. This reduction in pressure loss is expected to improve the thrust performance of the scramjet engine.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province of China

Nature Science Foundation of the Jiangsu Higher Education Institution of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3