On the wave propagation modes and operation range in rotating detonation combustor with varied injection and outlet throat

Author:

Wu YuwenORCID,Xu Gao,Ding Chenwei,Weng ChunshengORCID

Abstract

The rotating detonation combustor (RDC) has received remarkable attention in the aerospace community. In this work, an experimental RDC model supplied by liquid kerosene and oxygen-enriched air is established. A parametric survey is performed with different injection throats, outlet restrictions, and equivalence ratios to analyze the rotating detonation wave propagation modes comprehensively. Dynamic pressure transducers and a high-speed camera are both employed to identify wave modes synchronously. Overall, the propagation modes are found to be highly dependent on the injection throat and combustor outlet restriction. With a large injection to annulus area ratio of 0.3, a single-wave mode is characterized when no restriction is added at the combustor outlet. Reducing the outlet area leads to a decrease in the wave frequency and a narrower steady rotating detonation propagation regime. The propagation stability of the rotating detonation is strengthened when the injection to annulus area ratio decreases to 0.2. A dual-wave collision mode and a four-wave collision mode are observed, depending on the outlet restriction. A preliminary stable RDC operation range correlated with outlet to injection throat area ratio and equivalence ratio is achieved. Furthermore, an interval value of the outlet to injection throat area ratio is proposed to reach the potential positive total pressure gain. These findings should serve as the reference for RDC configuration design in air-breathing and gas-turbine propulsion systems.

Funder

National Natural Science Foundation of China

Foundation of National Key Laboratory of Transient Physics

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3