Investigation of hydrogen-enriched kerosene-fueled rotating detonation engine with multi-column film cooling

Author:

Li JingzheORCID,Yu JingtianORCID,Li JianghongORCID,Lei Ying,Yao SongbaiORCID,Zhang Wenwu

Abstract

To address the thermal protection challenges associated with the rotating detonation engine (RDE) in engineering applications, this study employs a three-dimensional numerical simulation based on the Eulerian–Lagrangian model to investigate the flow field of the kerosene-fueled rotating detonation with hydrogen addition. We explore the interaction between the rotating detonation flow field and the cooling air induced by multiple columns of uniformly distributed film cooling holes and also analyze the cooling effectiveness of film cooling. In the flow field where the rotating detonation wave passes through the film hole periodically at a high frequency, an increase in the number of film hole columns can decrease the fluctuation amplitude of the cooling air mass flow rate, and the recovery time of the blockage of film cooling holes shortens within a complete rotating detonation cycle. At a low injection pressure of 0.4 MPa, the cooling jet can barely be injected into the combustor. As the injection pressure increases to 0.6 and 0.8 MPa, the mass flow rate of cooling air increases significantly with enhanced cooling efficiency; however, a further rise to 1.0 MPa may result in the detachment of cooling air from the surface, without providing additional improvements in the protection area and cooling efficiency. Along the axial direction of the RDE, film cooling holes demonstrate an enhancement in cooling efficiency, which is found to maximize near the outlet.

Funder

National Natural Science Foundation of China

Ningbo Natural Science Foundation

Ningbo Yongjiang Talent Introduction Programme

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3