De-wetting of evaporating drops on regular patterns of triangular posts

Author:

Peng Hsuan-Yi1ORCID,Liu Bang-Yan1ORCID,Lo Chi-Chun1,Chen Li-Jen1ORCID,Seemann Ralf2ORCID,Brinkmann Martin2ORCID

Affiliation:

1. Department of Chemical Engineering, National Taiwan University 1 , 10617 Taipei, Taiwan

2. Experimental Physics and Center of Biophysics, Saarland University 2 , 66123 Saarbrücken, Germany

Abstract

Directional wicking and spreading of liquids can be achieved by regular micro-patterns of specifically designed topographic features that break the reflection symmetry of the underlying pattern. The present study aims to understand the formation and stability of wetting films during the evaporation of volatile liquid drops on surfaces with a micro-pattern of triangular posts arranged in a rectangular lattice. Depending on the density and aspect ratio of the posts, we observe either spherical-cap shaped drops with a mobile three-phase contact line or the formation of circular or angular drops with a pinned three-phase contact line. Drops of the latter class eventually evolve into a liquid film extending to the initial footprint of the drop and a shrinking cap-shaped drop sitting on the film. The drop evolution is controlled by the density and aspect ratio of the posts, while no influence of the orientation of the triangular posts on the contact line mobility becomes evident. Our experiments corroborate previous results of systematic numerical energy minimization, predicting that conditions for a spontaneous retraction of a wicking liquid film depend weakly on the orientation of the film edge relative to the micro-pattern.

Funder

Ministry of Science and Technology, Taiwan

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3