Kinetic network models to elucidate aggregation dynamics of aggregation‐induced emission systems

Author:

Liu Zige1,Kalin Michael L.2,Liu Bojun1ORCID,Cao Siqin1,Huang Xuhui1ORCID

Affiliation:

1. Theoretical Chemistry Institute Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA

2. Biophysics University of Wisconsin‐Madison Madison Wisconsin USA

Abstract

AbstractAggregation‐induced emission (AIE) is a phenomenon where a molecule that is weakly or non‐luminescent in a diluted solution becomes highly emissive when aggregated. AIE luminogens (AIEgens) hold promise in diverse applications like bioimaging, chemical sensing, and optoelectronics. Investigation in AIE luminescence is also critical for understanding aggregation kinetics as the aggregation process is an essential component of AIE emission. Experimental investigation of AIEgen aggregation is challenging due to the fast timescale of the aggregation and the amorphous aggregate structures. Computer simulations such as molecular dynamics (MD) simulation provide a valuable approach to complement experiments with atomic‐level knowledge to study the fast dynamics of aggregation processes. However, individual simulations still struggle to systematically elucidate heterogeneous kinetics of the formation of amorphous AIEgen aggregates. Kinetic network models (KNMs), constructed from an ensemble of MD simulations, hold great potential in addressing this challenge. In these models, dynamic processes are modeled as a series of Markovian transitions occurring among metastable conformational states at discrete time intervals. In this perspective article, we first review previous studies to characterize the AIEgen aggregation kinetics and their limitations. We then introduce KNMs as a promising approach to elucidate the complex kinetics of aggregations to address these limitations. More importantly, we discuss our perspective on linking the output of KNMs to experimental observations of time‐resolved AIE luminescence. We expect that this approach can validate the computational predictions and provide great insights into the aggregation kinetics for AIEgen aggregates. These insights will facilitate the rational design of improved AIEgens in their applications in biology and materials sciences.

Funder

Wisconsin Alumni Research Foundation

Publisher

Wiley

Subject

General Medicine,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3