Deep level traps in (010) β-Ga2O3 epilayers grown by metal organic chemical vapor deposition on Sn-doped β-Ga2O3 substrates

Author:

Dawe C. A.1ORCID,Markevich V. P.1ORCID,Halsall M. P.1ORCID,Hawkins I. D.1ORCID,Peaker A. R.1ORCID,Nandi A.2ORCID,Sanyal I.2ORCID,Kuball M.2ORCID

Affiliation:

1. Photon Science Institute and School of Electrical and Electronic Engineering, The University of Manchester 1 , Manchester M13 9PL, United Kingdom

2. Center for Device Thermography and Reliability, University of Bristol 2 , Bristol BS8 1TL, United Kingdom

Abstract

In this work, conventional deep-level transient spectroscopy (DLTS) and high-resolution Laplace-DLTS (L-DLTS) have been used to characterize deep-level traps in (010) β-Ga2O3 epilayers grown by metal organic chemical vapor deposition on native Sn-doped substrates. Two types of epilayers have been studied, one doped with silicon during growth to about 1.5 × 1017 cm−3 and the other type was unintentionally doped (UID). Electrical measurements were conducted on Au and Pt Schottky barrier diodes. In the Si-doped samples, only one electron trap with emission activation energy of 0.42 eV (E0.42) and concentration of (6–8) × 1013 cm−3 has been detected. In the UID samples, in addition to the E0.42 trap, two other traps with activation energies for electron emission of 0.10 eV (E0.10) and 0.53 eV (E0.53) have been observed. Dependencies of electron emission rate (eem) on the electric field (E) as well as concentration-depth profiles {NT(W)} have been measured and analyzed for the E0.10 and E0.42 traps. The eem(E) dependence for the E0.10 trap is characteristic for a donor energy level, while that for the E0.42 trap indicates an acceptor level. The NT(W) dependencies show non-uniform spatial distributions of both the E0.10 and E0.42 traps in the UID samples, with the concentration of the E0.10 trap dropping from about 1 × 1015 cm−3 at 1.5 μm from the surface to about 2 × 1013 cm−3 at 0.5 μm, which indicates out-diffusion from the substrate or interface into the epilayer as a likely source. The results obtained are compared with the literature, and possible origins of the detected traps are discussed.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3