Hydromechanical behavior analysis of fractured vuggy carbonate rocks based on homogenization theory

Author:

Huang ZhaoqinORCID,Liu ZijianORCID,Yao Jun,Wang Qi,Wu Yu-ShuORCID

Abstract

Fractured vuggy carbonate rocks are important for underground water and geo-energy reservoirs due to their significant contribution on water and hydrocarbon reserves and production. A vug is a small cavity in a carbonate rock, which is relatively larger than the intergranular pore space. The presence of multiscale fractures and vugs makes the hydromechanical behavior of rocks different from that of most geological materials. The objective of this work is to develop an upscaling method to analyze the hydromechanical behavior of fractured vuggy carbonate rocks based on homogenization theory. To this end, at first a novel conceptual model named discrete fracture-vug network (DFVN) model was proposed to describe the hydromechanical behavior on the fine scale. The matrix and fractures are poroelastic domains in which Biot equations are applied. The vugs are free fluid domains governed by Stokes equations. Two domains are coupled with extended Beavers–Joseph–Saffman interface conditions. Then, an upscaled hydromechanical model was developed via two-scale asymptotic homogenization. The model consistent with classical Biot equations, but the model coefficients possess explicit formulations which can be determined by three periodicity cell problems. Subsequently, efficient numerical solutions of cell problems are provided using finite element methods. Herein, the discrete fractures are modeled as lower-dimensional interfaces between matrix elements. The proposed model and method are verified through several numerical examples and experimental data. The results show that the storage coefficient and Biot coefficient increase with the presence of fractures and vugs. The equivalent elastic stiffness of a fractured vuggy rock is majorly affected by the vugs' volume ratio. The connectivity of DFVN has an important impact on the equivalent permeability.

Funder

National Nature Science Foundation of China

Major Science and Technology Projects of China National Petroleum Corporation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3