Multiphase flow analysis of complex wellbore–fracture–cave connections in condensate gas reservoirs

Author:

Pan QuanyuORCID,Cheng LinsongORCID,Jia PinORCID,Da YinpengORCID,Li JianhuiORCID,Cao ChongORCID,Jia ZhihaoORCID,Cao RenyiORCID

Abstract

The significant heterogeneity of fracture-caved gas reservoirs and the phase transition behavior with pressure depletion pose great challenges for flow behavior analysis and property estimation. Therefore, the objective of this paper is to develop robust and novel pressure transient analysis models for condensate-gas flow under pressure depletion in fracture-caved gas reservoirs. To characterize the complex connections between wellbore, fracture region, and caves, four conceptual models of wellbore–fracture–cave distributions are determined. The fracture region is considered as a dynamic three-zone (dry gas zone, condensate-gas two-phase zone, and transition zone) to characterize the phase transition during pressure depletion, while a variable storage concept is introduced to describe the phase transition in the wellbore and caves. The results indicate that six typical flow stages can be observed from the type curves: constant wellbore storage flow, variable wellbore storage flow, fracture linear flow (FLS), constant cave storage flow, variable cave storage flow, and transition flow. Moreover, the phase transition behavior in the fracture region is reflected in the changes of one-half slope straight lines during the FLS period, while the phase transition behavior in the wellbore and caves is reflected in the pressure derivative curve as a positive upward bending of the straight line with unit slope at later stage. The property estimation in the fracture-caved gas reservoirs (i.e., length and permeability of the fracture region, the storage coefficient of wellbore and cave) by matching with the actual pressure monitoring data provides a better understanding of the geological evidence.

Funder

National Natural Science Foundation of China

National Major Science and Technology Projects of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3