A Practical Methodology for Production Data Analysis in Carbonate Reservoirs Using New Decline Type Curves

Author:

Jia Zhihao1ORCID,Cheng Linsong1ORCID,Wang Peng1,Wang Suran1,Jia Pin1

Affiliation:

1. College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

Abstract

Carbonate reservoirs typically have complex pore structures, so the production wells typically have high production in the early production stage, but they decline rapidly. It is highly challenging to achieve accurate interpretation results. In this paper, a new and practical methodology for production data analysis of fractured and fractured-vuggy carbonate reservoirs is proposed. Firstly, analytical solutions to characterize the different multipore media and simulate transient production behavior of fractured and fractured-vuggy carbonate reservoirs during the transient flow regime are presented. Then, a new function f q D and f q D that related to the dimensionless production rate is introduced, and a series of new decline type curves are drawn to make a clear observation of different flow regimes. In addition, the effects of the storativity ratio, interporosity flow coefficient, skin factor, and dimensionless radial distance of external boundary on production performance are also analyzed. Finally, two example wells from the fractured and fractured-vuggy carbonate reservoirs are used to perform rate decline analysis with both the Blasingame type curves and the new type curves. The validation of the new method is demonstrated in comparison to the results of well test interpretation. The results show that the curves of 1 / f q D vs. t D are -shaped for dual-porosity reservoirs and M -shaped for triple porosity reservoirs and also indicate that the interpreted parameters such as permeability, skin factor, storativity ratio, and interporosity flow coefficient using new decline type curves are aligned well test interpretation. In correlation with other traditional well test analysis, this approach effectively reduces the multisolution probability of interpretation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3