Supervised perceptron learning vs unsupervised Hebbian unlearning: Approaching optimal memory retrieval in Hopfield-like networks

Author:

Benedetti Marco1ORCID,Ventura Enrico12ORCID,Marinari Enzo13ORCID,Ruocco Giancarlo1ORCID,Zamponi Francesco2ORCID

Affiliation:

1. Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy

2. Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France

3. CNR-Nanotec and INFN Sezione di Roma, Roma, Italy

Abstract

The Hebbian unlearning algorithm, i.e., an unsupervised local procedure used to improve the retrieval properties in Hopfield-like neural networks, is numerically compared to a supervised algorithm to train a linear symmetric perceptron. We analyze the stability of the stored memories: basins of attraction obtained by the Hebbian unlearning technique are found to be comparable in size to those obtained in the symmetric perceptron, while the two algorithms are found to converge in the same region of Gardner’s space of interactions, having followed similar learning paths. A geometric interpretation of Hebbian unlearning is proposed to explain its optimal performances. Because the Hopfield model is also a prototypical model of the disordered magnetic system, it might be possible to translate our results to other models of interest for memory storage in materials.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regularization, early-stopping and dreaming: A Hopfield-like setup to address generalization and overfitting;Neural Networks;2024-09

2. Unlearning regularization for Boltzmann machines;Machine Learning: Science and Technology;2024-06-01

3. The decimation scheme for symmetric matrix factorization;Journal of Physics A: Mathematical and Theoretical;2024-02-12

4. Eigenvector dreaming;Journal of Statistical Mechanics: Theory and Experiment;2024-01-01

5. Soft matter roadmap*;Journal of Physics: Materials;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3