Complex Fermi–Löwdin orbital self-interaction correction

Author:

Withanage Kushantha P. K.1ORCID,Jackson Koblar A.2ORCID,Pederson Mark R.1ORCID

Affiliation:

1. Department of Physics, the University of Texas at El Paso, El Paso, Texas 79968, USA

2. Department of Physics, Central Michigan Universiy, Mount Pleasant, Michigan 48859, USA

Abstract

This paper introduces the use of complex Fermi orbital descriptors (FODs) in the Fermi–Löwdin self-interaction-corrected density functional theory (FLOSIC). With complex FODs, the Fermi–Löwdin orbitals (FLOs) that are used to evaluate the SIC correction to the total energy become complex. Complex FLO-SIC (cFLOSIC) calculations based on the local spin density approximation produce total energies that are generally lower than the corresponding energies found with FLOSIC restricted to real orbitals (rFLOSIC). The cFLOSIC results are qualitatively similar to earlier Perdew–Zunger SIC (PZ-SIC) calculations using complex orbitals [J. Chem. Phys. 80, 1972 (1984); Phys. Rev. A 84, 050501(R) (2011); and J. Chem. Phys. 137, 124102 (2012)]. The energy lowering stems from the exchange–correlation part of the self-interaction correction. The Hartree part of the correction is more negative in rFLOSIC. The energy difference between real and complex solutions is greater for more strongly hybridized FLOs in atoms and for FLOs corresponding to double and triple bonds in molecules. The case of N2 is examined in detail to show the differences between the real and complex FLOs. We show that the complex triple-bond orbitals are simple, and physically appealing combinations of π and σ g orbitals that have not been discussed before. Consideration of complex FODs, and resulting unitary transformations, underscores the fact that FLO centroids are not necessarily good guesses for FOD positions in a FLOSIC calculation.

Funder

DOE Office of Basic Energy Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference38 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3