Bond length alternation of π-conjugated polymers predicted by the Fermi–Löwdin orbital self-interaction correction method

Author:

Nguyen Duyen B.1ORCID,Jackson Koblar A.1ORCID,Peralta Juan E.1ORCID

Affiliation:

1. Department of Physics and Science of Advanced Materials, Central Michigan University , Mount Pleasant, Michigan 48859, USA

Abstract

π-conjugated polymers have been used in a wide range of practical applications, partly due to their unique properties that originate in the delocalization of electrons through the polymer backbone. The level of delocalization can be characterized by the induced bond length alternation (BLA), with shorter BLA connected with strong delocalization and vice versa. The accurate description of this structural parameter can be considered a benchmark for testing the capability of different electronic structure methods for self-interaction error (SIE) removal and electron correlation inclusion. Density functional theory (DFT), in its local or semi-local flavors, suffers from SIE and, thus, underestimates the BLA compared to self-interaction-free methods. In this work, we utilize the Fermi–Löwdin orbital self-interaction correction (FLOSIC) method for one-electron self-interaction removal to characterize the BLA of five oligomers with increasing length extrapolated to the polymeric limit. We compare the self-interaction-free BLA to several DFT approximations, Møller–Plesset second-order perturbation theory (MP2), and the BLA obtained with the domain based local pair natural orbital CCSD(T) [DLPNO-CCSD(T)] approximation. Our findings show that FLOSIC corrects for the small BLA given by (semi-)local DFT approximations, but it tends to overcorrect with respect to CAM-B3LYP, MP2, and DLPNO-CCSD(T).

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perdew Festschrift editorial;The Journal of Chemical Physics;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3