Numerical simulation of the effect of laser wavelength on nanosecond laser ablation and plasma characteristic

Author:

Min Q.12ORCID,Liu X. B.1ORCID,Su M. G.12ORCID,Wu Y. H.1,Sun D. X.12,Cao S. Q.12,Dong C. Z.12

Affiliation:

1. Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China

2. Joint Laboratory of Atomic and Molecular Physics, Northwest Normal University & Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou 730070, China

Abstract

Based on the heat conduction equation, hydrodynamics equations, and radiation transport equation, a two-dimensional axisymmetric radiation hydrodynamics model is developed. The charge state distribution and energy level population in the plasma are solved by the collisional-radiative model using screened hydrogenic levels. The model is used to study the effect of excitation laser wavelength at 1064 and 266 nm on aluminum target evolution, plasma generation, laser absorption in the plasma, and the plasma characteristic during laser ablation in the presence of atmospheric pressure. For 1064 nm radiation, the evaporation of the target surface stops earlier and the plasma formation time is later. The plasma has higher temperature as well as density and the hottest region is at the forefront of the plasma. The plasma shielding effect resulted in a sharp decrease in the laser transmissivity of 1064 nm radiation to about 0.1%, while the transmissivity of 266 nm radiation only decreased to about 30%. The inverse bremsstrahlung is the most important laser absorption mechanism for 1064 nm, whereas photoionization dominates the entire absorption process in the case of 266 nm radiation. The effect of the plasma model on optical breakdown has been present. The results show that neither breakdown nor plasma formation is encountered if the local thermodynamic equilibrium model is used in 266 nm radiation.

Funder

Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University

Funds for Innovative Fundamental Research Group Project of Gansu Province

Science and technology project of Gansu Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3