Reconstruction and analysis of transient evolution images of laser-produced plasma plumes

Author:

He Siqi,Min QiORCID,Lu Haidong,Wu Yanhong,Cao Shiquan,Sun Duixiong,Zhang Denghong,Su Maogen,Dong Chenzhong

Abstract

We introduce a method for the analysis and simulation of transient images of laser-produced plasma (LPP) plumes. This method comprises three steps: (i) calculating the two-dimensional distribution of plasma parameters using a radiation hydrodynamics model, (ii) constructing radiation paths through ray tracing, and (iii) solving the radiation transport equation along these paths. In our simulations, we have meticulously considered factors that could influence the imaging results, including the quantum efficiency to different radiation wavelengths, the imaging lens’ transmittance, the target surface’s reflectivity, and the absorption, emission, and scattering quantum effect of the detector processes occurring in the plasma. We applied this method to analyze and simulate the transient images of aluminum plasma plumes in a background air environment at a pressure of 2000 Pa. The results demonstrate that our method not only produces simulated images that align with experimental results but also provides a reliable distribution of plasma state parameters and clearly identifies the ion species radiating in different bands. Given its capability in transient image reconstruction and its adaptability as a tool for spectral simulation and analysis of LPPs, we believe this method holds significant potential for spectral diagnostics in fields such as laser-induced breakdown spectroscopy, extreme ultraviolet lithography sources, and high-energy-density physics, among others.

Funder

National Natural Science Foundation of China

The Central Leading Local Science and Technology Development Fund Projects

Traditional Chinese Medicine Industry Innovation Consortium Project of Gansu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3