Affiliation:
1. Changchun Institute of Optics
Abstract
The non-uniformity and transient nature of laser-produced plasma are critical factors that affect the analysis of the extreme ultraviolet spectra of highly charged ions and the diagnosis of plasma states. This paper systematically investigates the characteristics of extreme ultraviolet radiation and the hydrodynamic evolution of laser-produced nickel plasmas from two perspectives: high-spatio-temporal-resolution extreme-ultraviolet spectroscopic measurement and radiation hydrodynamics simulation. The consistency between the four-band experimental spectra and their theoretically simulated spectra confirms the accuracy of the atomic structure parameters and plasma state parameters. We also analyze the significant contribution of the 3d-4f double-excited state radiation to the spectral profile and discuss the influence of the self-absorption caused by plasma opacity on the characteristics of extreme ultraviolet radiation. The findings are crucial for accurately understanding the characteristics of extreme ultraviolet radiation, the hydrodynamic evolution, and the application of medium- and high-Z laser-produced plasma as a pulsed short-wavelength light source.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Major Science and Technology Project of Gansu Province
Central Leading Local Science and Technology Development Fund Projects
Science and Technology Department of Gansu Province
Industrial Support Project of Gansu Province