Forming Fe nanocrystals by reduction of ferritin nanocores for metal nanocrystal memory

Author:

Matsumura Takashi1ORCID,Miura Atsushi1ORCID,Hikono Takio1,Uraoka Yukiharu1ORCID

Affiliation:

1. Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan

Abstract

To fabricate metal nanocrystal (NC) memories based on iron ferritin proteins, we propose a method for embedding ferritin cores in SiO2 and performing a reduction process by rapid thermal annealing (RTA) in a hydrogen atmosphere. An iron oxide core biochemically synthesized by ferritin was used to fabricate a high-density memory node array of 7.7 × 1011 dots/cm2. Reduction intermediates and metallic iron NCs were obtained in a short time by using a hydrogen atmosphere RTA with the iron oxide core embedded in SiO2. Metal-oxide-semiconductor memory structures were fabricated, capacitance–voltage (C–V) measurements were performed, and hysteresis (memory window) suggesting charging and discharging of NCs was observed. Furthermore, the memory window and the charge injection threshold tended to vary depending on the reduction temperature. Since these values are proportional to the magnitude of the dot work function (or electron affinity), it is assumed that the formation of reduced intermediates NCs with varying work functions depending on the treatment temperature affects the electrical properties. The results suggest that the work function of the charge retention node can be controlled by reducing the metal oxide, enabling a new approach to memory design that actively employs the reduction process.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3