Classical and quantum trial wave functions in auxiliary-field quantum Monte Carlo applied to oxygen allotropes and a CuBr2 model system

Author:

Amsler Maximilian1ORCID,Deglmann Peter23ORCID,Degroote Matthias4ORCID,Kaicher Michael P.3ORCID,Kiser Matthew56ORCID,Kühn Michael23ORCID,Kumar Chandan7ORCID,Maier Andreas8ORCID,Samsonidze Georgy9ORCID,Schroeder Anna110ORCID,Streif Michael4ORCID,Vodola Davide3ORCID,Wever Christopher1ORCID,

Affiliation:

1. Corporate Sector Research and Advance Engineering, Robert Bosch GmbH 1 , Robert-Bosch-Campus 1, 71272 Renningen, Germany

2. BASF SE, Quantum Chemistry 2 , Carl-Bosch-Str. 38, 67063 Ludwigshafen, Germany

3. BASF Digital Solutions GmbH, Next Generation Computing 3 , Pfalzgrafenstr. 1, 67056 Ludwigshafen, Germany

4. Quantum Lab, Boehringer Ingelheim 4 , Ingelheim am Rhein, Germany

5. Volkswagen AG 5 , Ungererstr. 69, 80805 Munich, Germany

6. TUM School of Natural Sciences, Technical University of Munich 6 , Boltzmannstr. 10, 85748 Garching, Germany

7. BMW Group, New Technology and Innovation 7 , Parkring 19-23, 85748 Garching, Munich, Germany

8. Munich Re AG 8 , Munich, Germany

9. Robert Bosch LLC, Research and Technology Center 9 , Sunnyvale, California 94085, USA

10. Merck KGaA 10 , Frankfurter Straße 250, 64293 Darmstadt, Germany

Abstract

In this work, we test a recently developed method to enhance classical auxiliary-field quantum Monte Carlo (AFQMC) calculations with quantum computers against examples from chemistry and material science, representative of classes of industry-relevant systems. As molecular test cases, we calculate the energy curve of H4 and the relative energies of ozone and singlet molecular oxygen with respect to triplet molecular oxygen, which is industrially relevant in organic oxidation reactions. We find that trial wave functions beyond single Slater determinants improve the performance of AFQMC and allow it to generate energies close to chemical accuracy compared to full configuration interaction or experimental results. In the field of material science, we study the electronic structure properties of cuprates through the quasi-1D Fermi–Hubbard model derived from CuBr2, where we find that trial wave functions with both significantly larger fidelities and lower energies over a mean-field solution do not necessarily lead to AFQMC results closer to the exact ground state energy.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference147 articles.

1. E. Farhi , J.Goldstone, and S.Gutmann, “A quantum approximate optimization algorithm,” arXiv:1411.4028 (2014).

2. Provably efficient machine learning for quantum many-body problems

3. Quantum advantage in learning from experiments

4. Theoretical aspects of quantum cryptography—Celebrating 30 years of BB84;Theor. Comput. Sci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3