Accurate in situ measurements of thermoelectric transport properties at high pressure and high temperature

Author:

Zhao Wei1,Cheng Jiaen1,Wang Dianzhen1,You Cun1,Zhang Jinmeng1,Ye Meiyan1,Wang Xin1,Dong Shushan1,Tao Qiang1ORCID,Zhu Pinwen1

Affiliation:

1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China

Abstract

Regulating electron structure and electron–phonon coupling by means of pressure and temperature is an effective way to optimize thermoelectric properties. However, in situ testing of thermoelectric transport performance under pressure and temperature is hindered by technical constraints that obscure the intrinsic effects of pressure and temperature on thermoelectric properties. In the present study, a new reliable assembly was developed for testing the in situ thermoelectric transport performance of materials at high pressure and high temperature (HPHT). This reduces the influence of thermal effects on the test results and improves the success rate of in situ experiments at HPHT. The Seebeck coefficient and electrical resistivity of α-Cu2Se were measured under HPHT, and the former was found to increase with increasing pressure and temperature; for the latter, although an increase in the pressure acted to lower the electrical resistivity, an increase in the temperature acted to increase it. On increasing pressure from 0.8 to 3 GPa at 333 K, the optimal power factor of α-Cu2Se was increased by ∼76% from 2.36 × 10−4–4.15 × 10−4 W m−1 K−2, and the higher pressure meant that α-Cu2Se had its maximum power factor at lower temperature. The present work is particularly important for understanding the thermoelectric mechanism under HPHT.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3